UK Fluids Conference 2019 Centre for Mathematical Sciences, Cambridge

Programme Tuesday 27 August 2019

12.30-14.00: Registration & Lunch, Churchill College

14.00-14.15 MR2: Welcome

14.15-15.00 MR2: Plenary Lecture Dwight Barkley, University of Warwick

15.00-15.30 Central Core: Coffee

15.30-17.40 MR2, MR3, MR9: Parallel Session A

	MR2	MR3	MR9
Session A	A2: Aerodynamics	A3: GFD & Porous Media Flow	A9: Droplets
15.30 1 15.43	1.27 Analysis of the boundary layer vortex sheet for surging and rotating bodies of finite thickness: P. Gehlert et al.	1.23 Defending against lava flows: E. Hinton et al.	1.49 Coalescence of droplets with dissimilar surface tension: T. Sykes et al.
15.43 2 15.56	 Modelling dynamic stall of a pitching airfoil in large-scale freestream turbulence: T. Boye et al 	1.46 Rivulet flow down an inclined permeable membrane: A. Alshaikhi et al.	1.59 Self-propelled droplet transport on liquid surfaces:G. Launay et al.
15.56 3 16.09	1.7 An investigation into the trigger of wake bimodality behind squareback bluff bodies using LES: F. Hesse	1.84 The dynamics of anisotropic ice in simple configurations: D. Richards et al.	1.73 Contact line dynamics and hysteresis measurements on socal surfaces:H. Barrio-Zhang et al.
16.09 4 16.22	 1.31 LES-based investigation of the angle of attack-dependence of flow past a cactus-shaped cylinder with four ribs: O. Zhdanov et al. 	1.90 On the formation of hydraulic jump for low- and high-viscosity liquids: R. Khayat et al.	2.14 Power spectrum and machine learning analysis applied to dried blood droplets: L. Hamadeh et al.
16.22 5 16.35	 1.38 Negating gust effects by actively pitching a wing: I. Angulo 	2.16 How long to reach similarity? H. Huppert et al.	1.67 Bifurcation analysis of evaporating droplets on smooth surfaces:M. Ewetola et al.
16.35 6 16.48	1.58 On the aerodynamics of the gliding seeds of Javan cucumber:D. Certini et al.	1.48 Hele-Shaw flows in doubly connected domains:S. McCue et al.	1.52 Effect of vapour pressure on the performance of a Leidenfrost engine:P. Agrawal et al.
16.48 7 17.01	1.70 Low-order prediction & modelling of intermittent flow separation & reattachment in unsteady 2D flows: D. Fernando et al.	1.1 Saturation-dependence of non- Fickian transport in porous media: V. Niasar	 1.109 Fluid dynamics of single/ multiple droplets onto a substrate with a topographical feature: K. Al-Ghaithi et al.
17.01 8 17.14	1.86 On the lift augmentation mechanism of an asymmetrically pitching foil: S. Otomo et al.	 1.99 On dispersion in heterogeneous porous rocks: N. Bhamidipati et al. 	1.115 A droplet mop: J. Saczek et al.
17.14 9 17.27	1.92 Computational aerodynamic solutions of hovering rotors by high-order schemes on unstructured grids: P. Silva et al.	1.127 Coarse grained models for reactive flows in porous media: homogenisation and numerical simulations: F. Municchi et al.	1.134 From walking to shooting modes in droplet vibrations:L. Kahouadji et al.
17.27 10 17.40	1.55 Experimental simulation of the vortex ring state:D. Pickles et al.	1.123 Dune-dune repulsion: K. Bacik et al.	

17.40-18.40 Central Core: Icebreaker Poster Session

Programme Wednesday AM 28 August 2019

9.00-12.08 MR2, MR3, MR9: Parallel Sessions B & C, with coffee break

	MR2	MR3	MR9
Session	B2: High Speed	B3: GFD:	B9: Biofluids:
В	Flows	High Re	Flagella/Swimming
9.00	1.8 Surface roughness effects in finite-rate reacting hypersonic		1.18 Extending generalised Taylor dispersion theory for the population-
1	boundary layers:		level model of a suspension of micro-
9.13	A. Margaritis et al.		swimmers: L. Fung et al.
9.13	1.36 Numerical simulations of wall cooling performance and	1.65 Experimental study of atmospheric stratification and urban	1.21 Active vs. passive bundling of prokaryotic flagella:
2	associated effects on transition in	flow and dispersion:	A. Chamolly et al.
9.26	hypersonic flows with injection from porous surfaces:	D. Marucci et al.	
	A. Cerminara et al.		
9.26	1.53 Flow physics and sensitivity to RANS modelling assumptions	1.71 Is climate change increasing atmospheric turbulence?	1.50 Efficient implementation of elastohydrodynamic integral operators
3	of a multiple normal shock wave	P. Williams	for Stokesian filaments:
9.39	boundary layer interactions: K. Boychev et al.		A. Hall-McNair
9.39	1.131 Shaping supersonic contoured nozzles for cold	1.102 On analytical solutions for the mean wind profile in an urban	1.62 Spontaneous synchronization of beating cilia: An experimental proof
4	spraying metallic particles:	canopy:	using vision-based control:
9.52	A. Rona et al.	O. Coceal	M. Elshalakani et al.
9.52	1.85 Supersonic wind tunnels:	1.108 Quantifying the effect of morphological features of river	1.66 FAST, NEAREST and flagellar
5	Effects of nozzle geometry: K. Sabnis et al.	channels on discharge relations:	regulation: M. Gallagher et al.
10.05		D. Livesey	
10.05	1.88 Aerodynamic optimisation of supersonic aerofoils based on	1.118 A dam-break driven by a moving source: a simple model for	1.68 Finite element modelling of microswimmers with applications in
6	deep neural networks:	a powder snow avalanche:	reproductive biology:
10.18	A. Feria-Alanis et al.	J. Billingham	C. Neal et al.
10.18	2.17 Potential flows through periodic domains with multiple	1.136 Turbulent flows over sparse	1.139 SPT: Slender phoretic theory of chemically active filaments:
7	objects per period:	canopies: A. Sharma et al.	P. Katsamba et al.
10.31	P. Baddoo et al.		
10.31	Central Core:	Central Core:	Central Core:
10.50	Coffee	Coffee	Coffee
Session	C2: Computational	C3: Stratified	C9: Biofluids:
С	Methods	Flows	Low Re
10.50	1.19 A customized immersed boundary method for turbulent	1.4 Regime transitions and energetics of sustained stratified	1.91 Vesicle transport and cytoplasmic streaming in the pollen tube:
1	flows with moving objects:	shear flows:	R. Dyson et al.
11.03	application to vertical axis tidal turbines: A. Giannenas et al.	A. Lefauve et al.	
11.03	1.20 An adaptive lattice Boltzmann solver with complex	1.26 Scale-resolving simulations of three-dimensional gravity currents	1.83 Structural and physical determinants of solute transport in
2	sub-grid scale turbulence models:	beyond the Boussinesq limit:	complex microvascular networks:
11.16	C. Gkoudesnes et al.	P. Bartholomew et al.	I. Chernyavsky et al.
11.16	1.28 A novel CFD methodology for prediction of direct laser metal	1.35 Asymptotic dynamics of high dynamic range stratified turbulence:	1.74 A computational model to predict the onset of secondary flows of blood
3	deposition:	G. Portwood et al.	in a cone & plate rheometer:
11.29	A. Basso		N. Kelly et al.
11.29	1.33 A lattice Boltzmann Method	1.95 Particle-laden gravity currents:	1.87 Evaporation-driven transport
4	in generalized curvilinear coordinates:	M. Lippert et al.	through soft hydrogels: M. Etzold et al.
11.42	J. Reyes Barraza et al.		
11.42	1.44 Modelling flows in	1.100 Internal gravity waves, shear,	1.138 Flow-induced symmetry
5	thermochemical nonequilibrium adaptive and mapped meshes:	and mixing in forced stratified turbulence:	breaking in growing bacterial biofilms: P. Pearce
11.55	C. Atkins et al.	C. Howland et al.	
11.55	1.137 CFD-based optimisation of	1.105 Turbulence in the body of	1.43 A microfluidic assay to study the
6	swirl inducing multi-nozzle annular jet pump:	gravity currents: C. Marshall	migration behaviour of marine bacteria in viscosity gradients:
40.00	A. Morrall		S. Pasupuleti et al.
12.08			-

Programme Wednesday PM 28 August 2019

12.15-13.00 MR2: Plenary Lecture Ian Hewitt, University of Oxford

13.00-14.00: Lunch, Churchill College

14.00-14.45 MR2: Plenary Lecture Anne-Virginie Salsac, CNRS/UTC

14.50-15.30 MR2: UKFN Thesis Prize: A. Lefauve, M. Arran & P. Baj

15.35-18.18 MR2, MR3, MR9: Parallel Sessions D & E with coffee break

	MR2	MR3	MR9
Session	D2: Turbulence:	D3: Plumes	D9: Non-Newtonian
D	Simulations		Fluids
15.35 1 15.48	1.72 Numerical simulations of grid-turbulence, and dissipation modelling in large-eddy simulations:		1.34 Shear-thinning fluids can be slippery! Non-identifiability of parameters for the Bird-Cross-Carreau- Yasuda family of models when applied
15.48 2 16.01	R. Hetherington 1.81 DNS of a turbulent rotating jet: S. Dunstan et al.	1.79 Multiphase plumes in a stratified ambient:N. Mingotti et al.	to blood rheology: D. Smith et al. 1.51 Determining how the microstructure of the Endothelial Glycocalyx Layer affects its bulk fluid-dynamical properties: T. Lee et al.
16.01 3 16.14	1.93 Simulation of turbulent flows with Nek5000: D. Fenton	1.75 Large eddy simulations of plumes in a stratified room: C. Vouriot	1.64 The role of protein concentration on the rheology of synovial fluid when modelling elastohydrodynamic lubrication of joint prostheses: L. Nissim et al.
16.14 4 16.27	1.94 Drag reduction by anisotropic permeable substrates: analysis & DNS:G. Gomez-de-Segura et al.	1.76 Sedimentation of tephra from stratified plumes:D. Ward	1.77 Elasticity suppresses fluidisation of yield-stress material under vibrations:A. Garg et al.
16.27 5 16.40	1.116 Feedback stabilization of a plane Couette flow exact coherent structure:G. Claisse et al.		1.13 CFD modelling of alginate production: A first approach to dynamic rheology & its impact on stirred & aerated bioprocesses: C. Sadino-Riquelme et al.
16.40	Central Core:	Central Core:	Central Core:
17.00	Coffee	Coffee	Coffee
Session	E2: Multiphase	E3: Industrial Flows:	E9: Biofluids:
E	Flows	Low Re	Applications
17.00 1 17.13	1.15 Experimental measurements in transitional partially-filled pipe flows using stereoscopic particle image velocimetry: T. Thornhill et al.	1.17 Confinement effects for 3D advection-diffusion boundary layers in U-shape and V-shape channel flows: J. Landel et al.	1.9 Multifunctional adsorbent structures for use as emergency respirators:J. Barnard et al.
17.13 2 17.26	 1.80 Predicting orientation of suspensions of elongated particles in three-dimensional thin channel flow: G. Cupples et al. 	 1.39 Nematic liquid crystal flow during the manufacture of liquid crystal devices: J. Cousins et al. 	1.121 A multicompartment SIS stochastic model with zonal ventilation for the spread of nosocomial infections: detection, outbreak management and infection control: M. Lopez-Garcia et al.
17.26 3 17.39	1.113 Development & verification a green approach towards isolating essential oils from <i>Rosmarinus officinalis</i> using ultrasound-assisted supercritical CO2: MC. Wei et al.	1.135 Implementation & verification of CFD model for crude-oil fouling:G. Goncalves et al.	1.45 A fluid dynamics model of kidney morphogenesis:V. Zubkov
17.39 4 17.52	1.114 Production of essential oil from <i>Lavandula angustifolia</i> through a green procedure & its theoretical solubility consideration: YC. Yang et al.	1.89 Adjoint-based optimal control of an inkjet waveform: P. Kungurtsev et al.	1.69 Applying the Goldilocks principle to predict coral habitat engineering:K. Georgoulas
17.52 5 18.05	1.106 A new approach to modelling polydisperse sprays with phase exchange based on the fully Lagrangian approach: O. Rybdylova et al.	2.15 Flow analysis and fouling behavior in 3-D printed wavy- patterned membranes: S. Mazinani et al.	1.122 Evaluating CFD against a zonal ventilation model for predicting airborne pathogen transfer under different hospital ward ventilation configurations: R. Jones et al.

18.30 for 19.30: Reception & Conference Banquet, Churchill College

Programme Thursday AM 29 August 2019

	MR2	MR3	MR9
Session	F2: Industrial Flows:	F3: Planetary	F9: Bubbles
F	High Re	Flows	
9.00	1.124 Nonlinear feedback control of the bi-modal flow behind a	1.2 Interactions between tidal flows and convection:	1.10 A new method of microbubble production for dissolved air flotation:
1	three-dimensional blunt bluff	C. Duguid et al.	B. Swart et al.
9.13	body: D. Ahmed et al.		
9.13	1.37 Evaluating turbine wake	1.11 Boundary layer control of	1.12 A theoretical study of the
2	steering techniques using scale- resolving simulations:	rotating convection in the Earth's core:	invariant sets and transient dynamics of a finite air bubble in a perturbed
9.26	G. Deskos et al.	R. Long et al.	Hele-shaw: J. Keeler et al.
9.26	1.47 Time-frequency analysis for	1.104 Detour induced by the piston	1.25 Modelling bubble propagation in
3	wakes of accelerating ships: R. Pethiyagoda	effect in double-diffusive convection of near-critical fluids:	elasto-rigid Hele-Shaw channels: J. Fontana
9.39		ZC. Hu et al.	
9.39	1.103 The effect of rotor wakes	1.5 The construction and evolution	1.111 Energy cascade in a
4	on compressor flow field within the multistage machines:	of an inviscid background state for Earth's magnetic field:	homogeneous swarm of bubbles rising in a vertical channel:
9.52	P. Przytarski et al.	C. Hardy et al.	B Fraga et al.
9.52	1.125 Influence of moving	1.78 Parallel-in-time integration of	1.133 DNS for the dynamics of 3D
5	ground use on the unsteady wake of a small-scale commercial road	dynamo simulations: A. Clarke	surfactant-laden bursting bubbles: R. Constante-Amores et al.
10.05	vehicle: A. Rejniak et al.		
10.05	1.119 Large-eddy simulation of	1.129 High-order integration of	1.132 Impact of surfactants on inertia- induced undulations on the surface of
6	enhanced mixing for water treatment applications:	particle motion for particle-in-cell schemes using the Boris algorithm	capillary bubbles:
10.18	B. Chen et al.	with spectral deferred corrections: K. Smedt	A. Batchvarov et al.
10.18	1.130 Influence of stack chimneys on the displacement	1.141 Variability of stochastically forced zonal jets:	
7	ventilation of an enclosed	L. Cope	
10.31	geometry: D. Dosil		
10.31	Central Core:	Central Core:	Central Core:
10.50 Session	Coffee	Coffee	Coffee
G	G2: Wall-bounded	G3: Compressible	G9: Capillary
_	Flows 1.22 Relative importance of	Flows 1.42 Evolution of hydroacoustic	Effects 1.6 Capillary retraction of an
10.50 1	dispersive and Reynolds stresses	waves in deep oceanic waters with	axisymmetric liquid ligament:
1 11.03	in turbulent channel flow over irregular Gaussian roughness:	generalised sound-speed profiles: S. Michele et al.	F. Conto et al.
	T. Jelly et al.		
11.03	1.30 Drag reduction and net- energy saving in a turbulent	1.96 Sound generation by entropy perturbations passing through cross-	1.24 Capillary adhesion on rough surfaces: When is splitting droplets
2	boundary layer using Bayesian	sectional area changes:	beneficial?
11.16	optimisation and wall blowing: O. Mahfoze et al.	D. Yang et al.	M. Butler et al.
11.16	1.61 The effect of heat transfer on boundary layer kinetic energy	1.97 Shape sensitivity analysis of thermoacoustic instability in an	1.63 A lattice-Boltzmann model of electrocapillarity:
3	dissipation:	annular combustor using an adjoint	E. Ruiz-Gutierrez et al.
11.29	L. Jardine et al.	Helmholtz solver: S. Falco	
11.29	1.117 Coherent patterns and bypass laminar turbulent	1.54 Effect of ambient pressure oscillation on the primary break-up	1.128 Three-dimensional numerical simulations of a thin film falling
4	transition in boundary layers:	of jet spray:	vertically down the inner surface of a
11.42	J. Oloo et al.	Z. Zhang et al.	rotating cylinder: U. Farooq et al.
11.42	1.82 The impact of shark skin denticles on the turbulent flat	1.126 Exit dynamics of a 2D cylinder from the water:	1.120 Droplet retention & shedding on slippery substrates:
5	plate boundary layer:	I. Ashraf et al.	B. Orme et al.
11.55	C. Lloyd et al.		
11.55	1.101 A unified approach to the	1.140 Recasting Navier-Stokes	1.40 Jetting behaviour in the presence
6	study of turbulence over smooth and drag-reducing surfaces:	equations: S. Dadzie et al.	of surfactants in inkjet printing: E. Antonopoulou et al.
12.08	J. Ibrahim et al.		
l			l

9.00-12.08 MR2, MR3, MR9: Parallel Sessions F & G, with coffee break

12.15-13.30: Lunch & Close, Churchill College

Poster Session Tuesday PM 27 August 2019

2.1: Methods for investigating dissolution in surfactant solutions R. Hendrikse

2.2: Accurate lattice Boltzmann simulations of gas permeability through nanoporous media **D. Fan et al.**

2.3: Predicting spray impact on and carry-over from complex shaped surfaces **L. Gray**

2.4: Fluid transport correlations in partially filled pipes for nuclear decommissioning **C. Cunliffe et al.**

2.5: Massively parallelized models of fluid-solid multiphase flow D. Adekanye

2.6: The Zhang–Viñals equations for pattern forming problems **R. Coyle**

2.7: Folding and necking of layered viscous structures **O. Goulden**

2.8: Turbulence modelling in astrophysical turbulent mixing layers **J. Finn**

2.9: Conventional and cryogenic coolants for machining applications **E. Harvey**

2.10: Direct numerical simulation of an Oldroyd-B filament thinning **K. Zinelis et al.**

2.11: Utilisation of instrumented particles for the study of incipient entrainment **K. AI Obaidi et al.**

2.12: Hydrological representations of extreme precipitation in East Africa under climate change using a convection-permitting model **C. West**

2.13: Modelling the motion of the vitreous humour: A boundary integral approach **L. Bevis**

1.29: Flow regimes of stratified particle-laden plumes **J. Barnard**

1.56: Robust optimization of microfluidic flow systems **F. Zagklavara**

1.57: Droplet mobility on the flexible slips (F-slips) (**M. Rahman et al.**

1.41: Experimental modelling of infectious aerosols from people with cystic fibrosis **J. Proctor**

1.32: The late-time evolution of an isolated symmetrically unstable front **A. Wienkers et al.**

1.107: Aerosol generation from liquid droplet impact on solid surfaces: **I. Salem**